Macro Crystalline Graphite (Carbon) - Without Dust **Hordern & Company** Chemwatch: **27-9766**Version No: **3.1.1.1** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 1 Issue Date: **05/08/2016**Print Date: **05/08/2016**S.GHS.AUS.EN #### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Macro Crystalline Graphite (Carbon) - Without Dust | |-------------------------------|--| | Synonyms | Natural Graphite GP 80/85 | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified | Use according to manufacturer's directions. | |---------------------|---| | uses | Material, lubricant, lead. | #### Details of the supplier of the safety data sheet | Registered company name | Hordern & Company | Pressol | |-------------------------|--|---| | Address | PO Box 350 Artarmon NSW 1570 Australia | Am Gansacker 10 c Umkirch 79224 Germany | | Telephone | +61 2 9417 6968 | +49 7665 93 46 000 | | Fax | +61 2 9417 6954 | +49 7665 93 46 130 | | Website | Not Available | Not Available | | Email | sales@hordernandco.com.au | info@pressol.com | #### **Emergency telephone number** | Association /
Organisation | Not Available | Not Available | |---|---------------|---------------| | Emergency
telephone
numbers | Not Available | Not Available | | Other emergency
telephone
numbers | Not Available | Not Available | #### **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture NON-HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | Not Applicable | |------------------|----------------| | Classification | Not Applicable | ### Label elements | GHS label elements | Not Applicable | |--------------------|----------------| | | | | SIGNAL WORD | NOT APPLICABLE | Issue Date: **05/08/2016**Print Date: **05/08/2016** #### **Hazard statement(s)** Not Applicable #### Precautionary statement(s) Prevention Not Applicable #### Precautionary statement(s) Response Not Applicable #### Precautionary statement(s) Storage Not Applicable #### Precautionary statement(s) Disposal Not Applicable #### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### **Substances** See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |-----------|-----------|----------------------------------| | | | naturally occurring graphite, as | | 7782-42-5 | >99 | graphite, natural | #### **SECTION 4 FIRST AID MEASURES** #### **Description of first aid measures** | Eye Contact | If this product comes in contact with eyes: • Wash out immediately with water. • If irritation continues, seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If dust is inhaled, remove from contaminated area. Encourage patient to blow nose to ensure clear passage of breathing. If irritation or discomfort persists seek medical attention. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. #### **SECTION 5 FIREFIGHTING MEASURES** #### **Extinguishing media** - There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. #### Special hazards arising from the substrate or mixture | Fire | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. | |-----------------|-------------------------------------------------------------------------------------------------------------------------------------| | Incompatibility | as ignition may result | #### Advice for firefighters Chemwatch: 27-9766 Page 3 of 12 Issue Date: 05/08/2016 Version No: 3.1.1.1 Print Date: 05/08/2016 Macro Crystalline Graphite (Carbon) - Without Dust ### Fire Fighting - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. - · Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions. - Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions). - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited - particles exceeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion. - In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC). - When processed with flammable liquids/vapors/mists,ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds - MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts. #### Fire/Explosion Hazard - A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people. - Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this - Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. - Build-up of electrostatic charge may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. - All movable parts coming in contact with this material should have a speed of less than 1-meter/sec. - A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source. - One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours). - Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases. Combustion products include; carbon monoxide (CO) carbon dioxide (CO2) hydrogen fluoride, silicon dioxide (SiO2) other pyrolysis products typical of burning organic material #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up Chemwatch: 27-9766 Page 4 of 12 Issue Date: 05/08/2016 Version No: 3.1.1.1 Print Date: 05/08/2016 #### Macro Crystalline Graphite (Carbon) - Without Dust Clean up waste regularly and abnormal spills immediately. Avoid breathing dust and contact with skin and eyes. Wear protective clothing, gloves, safety glasses and dust respirator. Use dry clean up procedures and avoid generating dust. Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) **Minor Spills** (consider explosion-proof machines designed to be grounded during storage and use). Dampen with water to prevent dusting before sweeping. Place in suitable containers for disposal. Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. · Control personal contact by wearing protective clothing. • Prevent, by any means available, spillage from entering drains or water courses. **Major Spills** · Recover product wherever possible. • IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. · ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. • If contamination of drains or waterways occurs, advise Emergency Services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling Safe handling - Wet, activated carbon removes oxygen from the air thus producing a severe hazard to workers inside carbon vessels and in enclosed or confined spaces where activated carbons might accumulate. - Before entry to such areas, sampling and test procedures for low oxygen levels should be undertaken; control conditions should be established to ensure the availability of adequate oxygen supply. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) - Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and - Establish good housekeeping practices. - Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust - Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area. - Do not use air hoses for cleaning. - Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used. - Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition. #### Continued... Version No: **3.1.1.1** #### Macro Crystalline Graphite (Carbon) - Without Dust Issue Date: **05/08/2016** Print Date: **05/08/2016** - Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance. - Do not empty directly into flammable solvents or in the presence of flammable vapors. - The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - Do NOT cut, drill, grind or weld such containers. - In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. Carbon and charcoal may be stabilised for storage and transport, without moistening, by treatment with hot air at 50 deg. C.. Use of oxygen-impermeable bags to limit oxygen and moisture uptake has been proposed. Surface contamination with oxygenated volatiles may generate a heat of reaction (spontaneous heating). Should stored product reach 110 deg. C., stacked bags should be pulled apart with each bag separated by an air space to permit cooling away from other combustible materials. - Store in original containers. - · Keep containers securely sealed. - Store in a cool, dry area protected from environmental extremes. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storage and handling recommendations contained within this SDS. #### For major quantities: - Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). - Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities. #### Conditions for safe storage, including any incompatibilities ## Suitable container Other information - Lined metal can, lined metal pail/ can. - Plastic pail. - ▶ Polyliner drum. - Packing as recommended by manufacturer. - · Check all containers are clearly labelled and free from leaks. ### For carbon powders: - Avoid oxidising agents, reducing agents. - Reaction with finely divided metals, bromates, chlorates, chloramine monoxide, dichlorine oxide, iodates, metal nitrates, oxygen difluoride, peroxyformic acid, peroxyfuroic acid and trioxygen difluoride may result in an exotherm with ignition or explosion. Less active forms of carbon will ignite or explode on suitably intimate contact with oxygen, oxides, peroxides, oxosalts, halogens, interhalogens and other oxidising species. # Storage incompatibility - Explosive reaction with ammonium nitrate, ammonium perchlorate, calcium hypochlorite and iodine pentoxide may occur following heating. Carbon may react violently with nitric acid and may be explosively reactive with nitrogen trifluoride at reduced temperatures. In the presence of nitrogen oxide, incandescence and ignition may occur. Finely divided or highly porous forms of carbon, exhibiting a high surface area to mass (up to 2000 m2/g) may function as unusually active fuels possessing both adsorptive and catalytic properties which accelerate the release of energy in the presence of oxidising substances. Dry metal-impregnated charcoal catalysts may generate sufficient static, during handling, to cause ignition. - Graphite in contact with liquid potassium, rubidium or caesium at 300 deg. C. produces intercalation compounds (C8M) which ignite in air and may react explosively with water. The fusion of powdered diamond and potassium hydroxide may produce explosive decomposition. #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### **INGREDIENT DATA** | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |--------------------|------------|---------------------------------------------------------------------------|-------|-----------|-----------|-----------| | Australia Exposure | graphite, | Graphite (all forms except fibres) (respirable dust)(natural & synthetic) | 3 | Not | Not | Not | | Standards | natural | | mg/m3 | Available | Available | Available | #### **EMERGENCY LIMITS** | | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |--|------------|---------------|--------|--------|--------| |--|------------|---------------|--------|--------|--------| Chemwatch: **27-9766**Version No: **3.1.1.1** Page 6 of 12 #### Macro Crystalline Graphite (Carbon) - Without Dust Issue Date: **05/08/2016** Print Date: **05/08/2016** | graphite, natural | Graphite; (Mineral carbon) | 2 mg/m3 | 2 mg/m3 | 95 mg/m3 | | |-------------------|----------------------------|---------|---------------|----------|--| | In ave die né | Ovining IDLU | 1 | Revised IDLH | | | | Ingredient | Original IDLH | | Revised IDLII | | | | graphite, natural | N.E. mg/m3 / N.E. ppm | | 1,250 mg/m3 | | | #### **Exposure controls** Exhaust ventilation should be designed to prevent accumulation and recirculation in the workplace and safely remove carbon black from the air. Note: Wet, activated carbon removes oxygen from the air and thus presents a severe hazard to workers inside carbon vessels and enclosed or confined spaces. Before entering such areas sampling and test procedures for low oxygen levels should be undertaken and control conditions set up to ensure ample oxygen availability.[Linde] Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. - Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. - If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: - (a): particle dust respirators, if necessary, combined with an absorption cartridge; - (b): filter respirators with absorption cartridge or canister of the right type; - (c): fresh-air hoods or masks. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------| | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Personal protection **Appropriate** engineering controls # Eye and face protection - Safety glasses with side shields. - Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A Chemwatch: 27-9766 Page 7 of 12 Issue Date: 05/08/2016 Version No: 3.1.1.1 Print Date: 05/08/2016 #### Macro Crystalline Graphite (Carbon) - Without Dust written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Skin protection See Hand protection below The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact, chemical resistance of glove material, glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher Hands/feet (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) protection is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. ▶ Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. · Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. polychloroprene. nitrile rubber. butyl rubber. fluorocaoutchouc. polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. **Body protection** See Other protection below Overalls. ▶ P.V.C. apron. Other protection Barrier cream. Skin cleansing cream. #### Respiratory protection Thermal hazards Particulate. (AS/NZS 1716 & 1715, EN 143:000 & 149:001, ANSI Z88 or national equivalent) If inhalation risk above the TLV exists, wear approved dust respirator. ▶ Eye wash unit. Not Available Use respirators with protection factors appropriate for the exposure level. - Up to 5 X TLV, use valveless mask type; up to 10 X TLV, use 1/2 mask dust respirator - Up to 50 X TLV, use full face dust respirator or demand type C air supplied respirator - ▶ Up to 500 X TLV, use powered air-purifying dust respirator or a Type C pressure demand supplied-air respirator - Over 500 X TLV wear full-face self-contained breathing apparatus with positive pressure mode or a combination respirator with a Type C positive pressure supplied-air full-face respirator and an auxiliary self-contained breathing apparatus operated in pressure demand or other positive pressure mode - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory Issue Date: **05/08/2016** Print Date: **05/08/2016** - protection. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | Light grey odourless solid; insoluble in water. Bulk density: 280 kg/m3 approx. | | | |--|---|---|----------------| | Physical state | Divided Solid | Relative density
(Water = 1) | 2.26 | | Odour | Not Available | Partition
coefficient
n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | ~600 | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | 3550 | Viscosity (cSt) | Not Applicable | | Initial boiling point
and boiling range
(°C) | Not Applicable | Molecular weight
(g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Applicable | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive
Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive
Limit (%) | Not Available | Volatile
Component (%vol) | Not Applicable | | Vapour pressure
(kPa) | Not Applicable | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution
(1%) | neutral | | Vapour density
(Air = 1) | Not Applicable | VOC g/L | Not Available | #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |--|---| | Chemical stability | Product is considered stable and hazardous polymerisation will not occur. | | Possibility of
hazardous
reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible
materials | See section 7 | | Hazardous
decomposition
products | See section 5 | Issue Date: **05/08/2016**Print Date: **05/08/2016** #### **SECTION 11 TOXICOLOGICAL INFORMATION** ### Information on toxicological effects | Inhaled | The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Impurities found in carbons, including iodine, can be toxic. Carbon dusts in the air may cause irritation of the mucous membranes, eyes and skin. | |--------------|---| | Ingestion | Ingestion of finely divided carbon may produce gagging and constipation. Aspiration does not appear to be a concern as the material is generally regarded as inert and is often used as a food additive. Considered an unlikely route of entry in commercial/industrial environments | | Skin Contact | There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons. Open cuts, abraded or irritated skin should not be exposed to this material | | Eye | Eyes exposed to carbon particulates may be liable to irritation and burning. These can remain in the eye causing inflammation lasting weeks, and can cause permanent dark dotty discolouration. There is some evidence to suggest that this material can cause eye irritation and damage in some persons. | | Chronic | Prolonged or repeated inhalation of dust may cause in lung disease. Graphite workers have reported symptoms of headaches, coughing, depression, low appetite, difficult breathing and black sputum. Workers suffering from this have generally worked in the industry for long periods, (10 years or more), although some cases have been reported after as little as four years. There is insufficient evidence to suggest that exposure to carbon black causes increased susceptibility to cancer or other ill effects. Some lung changes can occur after a prolonged period of exposure as well as increased strain on the right side of the heart. | | Macro Crystalline | TOXICITY | IRRITATION | |----------------------------------|--|-----------------------------------| | Graphite (Carbon) - Without Dust | Not Available | Not Available | | | TOXICITY | IRRITATION | | graphite, natural | Inhalation (rat) LC50: >2 mg/L/4hr ^[1] | Eye (rabbit): non-irritant * | | | Oral (rat) LD50: >2000 mg/kg ^[2] | Eye : Not irritating | | | | Skin (rabbit): 4 h non-irritant * | | | Skin : Not irritating | | | Legend: | 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of | | ## GRAPHITE, NATURAL chemical Substances Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. Chemwatch: 27-9766 Version No: 3.1.1.1 #### Page 10 of 12 #### Macro Crystalline Graphite (Carbon) - Without Dust | issue | Date: | 05/08/2016 | | |-------|-------|------------|--| | Drint | Doto | 05/00/2046 | | | Acute Toxicity | 0 | Carcinogenicity | 0 | |-----------------------------------|---|-----------------------------|---| | Skin
Irritation/Corrosion | 0 | Reproductivity | 0 | | Serious Eye
Damage/Irritation | 0 | STOT - Single
Exposure | 0 | | Respiratory or Skin sensitisation | 0 | STOT - Repeated
Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | **Legend:** X − Data available but does not fill the criteria for classification – Data required to make classification available Data Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** #### **Toxicity** | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |-------------------|--|--------------------|-------------------------------|--------------------|--------| | graphite, natural | LC50 | 96 | Fish | >100mg/L | 2 | | graphite, natural | EC50 | 48 | Crustacea | >=38.4- <=67.6mg/L | 2 | | graphite, natural | NOEC | 672 | Crustacea | >=0.58- <=10mg/L | 2 | | graphite, natural | EC50 | 72 | Algae or other aquatic plants | 19mg/L | 2 | | graphite, natural | EC50 | 72 | Algae or other aquatic plants | 7.2mg/L | 2 | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | | **DO NOT** discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: Product / **Packaging** disposal Reduction ▶ Reuse Recycling Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its Chemwatch: 27-9766 Page 11 of 12 Issue Date: 05/08/2016 Version No: 3.1.1.1 Print Date: 05/08/2016 #### Macro Crystalline Graphite (Carbon) - Without Dust intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered - Where in doubt contact the responsible authority. - Recycle wherever possible. - · Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material) - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 TRANSPORT INFORMATION** #### **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture #### GRAPHITE, NATURAL(7782-42-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists | National Inventory | Status | |----------------------------------|---| | Australia - AICS | Υ | | Canada - DSL | Υ | | Canada - NDSL | N (graphite, natural) | | China - IECSC | Υ | | Europe - EINEC /
ELINCS / NLP | Y | | Japan - ENCS | N (graphite, natural) | | Korea - KECI | Y | | New Zealand -
NZloC | Y | | Philippines - PICCS | Υ | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** Chemwatch: 27-9766 Page 12 of 12 Issue Date: 05/08/2016 Version No: 3.1.1.1 #### Macro Crystalline Graphite (Carbon) - Without Dust Print Date: 05/08/2016 #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value **BCF**: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.